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Abstrct

I
n this project we train World Chess
Federation (FIDE) rating systems us-
ing a training dataset of a recent

eleven-year period with games from 2000
chess players. We will then use our sys-
tem to predict the outcome of chess games
played by the same players in the follow-
ing half year. Accuracy between predicted
results and actual game results is the pri-
mary indicator of whether our approach is
a practical chess rating system.

Background

World Chess Federation (FIDE) adopted Elo rat-
ing system since 1970 and this rating system has
been the primary yardstick in the world to mea-
sure the strength of chess players. The Elo rating
system also has many other applications in sports
rankings. Despite the popularity of the Elo sys-
tem, it has never been demonstrated that it is
technically superior to other approaches. In this
project we are going to investigate approaches
that might do better than the Elo system. Such
an investigation could have major implications on
the theory and practice of ratings methodology.

Dataset

All game results and rating data are extracted
from FIDE internal database and Chessbase
database. We have collected the following data in

a 135-month period of professional chess games
from 2000 different chess players from year 2000
to year 2011:
1. Primary training dataset from the first 127
months to train our prediction system.
2. Secondary training dataset, which is used
along with the primary data set to validate and
tune parameters.
3. Initial rating list that provides an initial list of
the involved players FIDE ratings and K-factor
(player’s game activity factor).
4. Test games dataset that identifies the chess
games that we are predicting.

Method

Model - Hidden Markov Process

We model the game results as a Hidden Markov
Process. We assume that each chess player i has
a rating, or relative strength, in month t, denoted
as Xi,t. We can’t directly observe Xi,t, so it’s the
hidden state of the Hidden Markov Process. We
can observe the chess game results Yt,j1,j2 , which
denotes the result of the game between white
player j1 and black player j2 in month t. Yt,j1,j2
can take 3 values, 1 for ’white player win’, 0.5 for
’draw’, 0 for ’white player lose’. The dynamics of
Xi,t and Yt,j1,j2 is summarized as

Xi,t = w0X̄t +
k∑
l=1

wlXi,t−l + εi,t εi,t ∼ N(0, σ2
i,t)

(1)

Yt,j1,j2 ∝ φ
Yt,j1,j2
t,j1,j2

(1− φt,j1,j2)(1−Yt,j1,j2 ) (2)
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log
φt,j1,j2

1− φt,j1,j2
= Xj1,t −Xj2,t + FA (3)

In (1), the dynamic of ratings Xi,t follows
a time series model AR(k). In other words,
Xi,t is a weighted average of X̄t−1 (average
rating of all the players at month t − 1) and
Xi,t−l(l = 1, 2, . . . , k) (the player’s ratings of
previous k months), plus a Gaussian noise. X̄t−1

is included in the weighted average, because if
a player doesn’t play this month, we would like
his rating to move to the average rating of all
players, instead of just the average rating of the
player.

In (2), Yt,j1,j2 follows a Bernoulli-like dis-
tribution, with a parameter φt,j1,j2 which reflects
the ‘winning probability’ determined by Xj1,t and
Xj2,t. Here, a multinomial distribution might be
an alternative choice, but it also introduces a
new tuning parameter which is hard to determine.

In (3), we model the odds of ‘winning probability’
to be linear in Xj1,t and Xj2,t, because of the
simplicity of its log-likelihood function. FA is
a constant representing the advantage of white
player , taking value log(56%

44%
) since in the rating

range of these players, white players’ winning
probability is about 56% according to FIDE
report.

The parameters in the model, the weights
wl’s and the noise variance σ2

i,t, are chosen to
have the form

wl =
exp−λl∑k+1
s=1 exp−λl

l = 1, 2, . . . , k (4)

w0 = 1−
k∑
l=1

wl (5)

σ2
i,t = V ar(Xi,t−1, Xi,t−2, . . . , Xi,t−k) + σ2

0 (6)

In(4), the weight is decreasing exponentially,
which corresponds to the idea that historical
ratings’ influence on future games is decreasing
exponentially.

In (6), the noise variance includes a term
that represents the stability of a player’s rating.
Note that the tuning parameters of this Hidden
Markov Process are k, λ and σ2

0.

Fitting - Newton Raphson’s Method
The idea of fitting the data is to update the
player ratings by maximizing the log-likelihood
function. At month t, the likelihood function of
player ratings Xi,t and game results Yt,j1,j2 is

P (Xi,t, Yt,j1,j2|Xi,s, s < t)

∝
p∏
i=1

1√
2πσi,t

e
− 1

2σ2
i,t

(Xi,t−(w0X̄t−1+
∑k
l=1 wlXi,t−l))

2

·
∏

(j1,j2)

φ
Yt,j1,j2
t,j1,j2

(1− φt,j1,j2)(1−Yt,j1,j2 )

∝
p∏
i=1

1√
2πσi,t

e
− 1

2σ2
i,t

(Xi,t−(w0X̄t−1+
∑k
l=1 wlXi,t−l))

2

·
∏

(j1,j2)

eYt,j1,j2 (Xj1,t−Xj2,t+FA)

· 1

1 + eXj1,t−Xj2,t+FA

(7)

Take log, we get the log-likelihood function

lt = log(ct)−
∑
i

1

2σ2
i,t

(Xi,t −

(w0X̄t−1 +
k∑
l=1

wlXi,t−l))
2

+
∑

(j1,j2)

Yt,j1,j2(Xj1,t −Xj2,t + FA)

−
∑

(j1,j2)

log(1 + eXj1,t−Xj2,t+FA) (8)

It’s easy to see the log-likelihood function is con-
cave. To maximize it, we compute the gradient
and Hessian

gradi =
∂lt
∂Xi,t

= − 1

σ2
i,t

(Xi,t − (w0X̄t−1 +
k∑
l=1

wlXi,t−l))

+
∑
(i,j2)

Yt,i,j2 −
∑
(j1,i)

Yt,j1,i

−
∑
(i,j2)

eXi,t−Xj2,t+FA

1 + eXi,t−Xj2,t+FA

+
∑
(j1,i)

eXj1,t−Xi,t+FA

1 + eXj1,t−Xi,t+FA
(9)
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Hi,j =
∂2lt

∂Xi,t∂Xj,t

=



− 1
σ2
i,t
−

∑
(i,j2)

e
Xi,t−Xj2,t+FA

(1+e
Xi,t−Xj2,t+FA)2

−
∑

(j1,i)
e
Xj1,t

−Xi,t+FA

(1+e
Xj1,t

−Xi,t+FA)2
i = j∑

(i,j)
eXi,t−Xj,t+FA

(1+eXi,t−Xj,t+FA)2

+
∑

(j,i)
eXj,t−Xi,t+FA

(1+eXj,t−Xi,t+FA)2
i 6= j

(10)

Then we can apply Newton Raphson’s Method
to get the updated player ratings.

Xnew
i,t := Xold

i,t −H−1 ~grad (11)

At the start of the updating process, we initialize
the ratings to be

Xi,t ∼ N(0, σ2
0) t = −(k − 1),−(k − 2), . . . , 0

(12)

Prediction
Given the current ratings Xi and Xj of player i
and j, we predict the game result Yi,j by comput-
ing

P (Yi,j = 1 (white win)) ∝ φi,j (13)

P (Yi,j = 0.5 (draw)) ∝ C
√
φi,j(1− φi,j) (14)

P (Yi,j = 0 (white lose)) ∝ 1− φi,j (15)

where φi,j is computed by (3) and constant C is
set to be π/8. Constant C is set such that the
draw game probability agrees with the probability
that a draw game appears in the training data
set, which is roughlt 50%. We then pick the result
with largest probability as our prediction.

Picking tuning parameter
In our model, we have 3 tuning parameters,
k, λ and σ2

0 that we have to specify before
fitting the data. To pick them, we separate
the data into training set and testing set, try
different combinations of k, λ and σ2

0, and pick
the combination with the largest log-likelihood
for testing data. Figure 1 shows how testing
log-likelihood changes with tuning parameters.

With this analysis, we pick k = 3, λ = 0.2,
σ2

0 = 1.
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Figure 1: Testing log-likelihood v.s Tuning parame-
ters
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Figure 2: Success rates v.s ‘predict winning proba-
bility’ φ

We applied our method to a data set of game
results of 2000 chess players in 11 years. The
data set was separated into 2 parts, game results
of month 1 to 127 as the training set and results
of month 128 to 132 as testing set. For the
training part, we fitted the training set to get the
player ratings. Then for testing part, each month
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we used the most recently updated ratings to
predict the game results, then the ratings were
updated using the observed game results of this
month.

The success rate of prediction is 55.64%,
which is much better than a random guess ( 33%,
since result has ‘white win’, ‘draw’, ‘white lose’ 3
cases). Also if we only look at the games with the
case that both prediction and observed results
are not ‘draw’, the success rate of prediction
is 85.73%, which implies that the prediction is
reliable when ratings show one player dominates
the other.

To further illustrate the result, we plot
the success rates v.s ‘predict winning probability’
φ as Figure 2. We can see that when φ is below
0.1 or above 0.9, the success rate is very high,
which implies the confidence that when one
player dominates the other, our rating system
is reliable. When φ is between 0.4 and 0.6, the
success rate is around 60%, which makes sense
because for games between players with similar
ratings, most results would be ‘draw’ which is
consistent with our prediction but it’s also likely
that ‘win’ or ‘lost’ happens. For φ between 0.2
and 0.4 (0.6 and 0.8), the prediction is poor,
because the result is on the edge of ‘lose’ and
‘draw’ ( or ‘win’ and ‘draw’), which is difficult to
predict in nature.
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Figure 3: Box plot of ‘predict winning probability’
φ

We also plot the box plot of ‘predict winning

probability’ φ when true result is ‘win’, ‘draw’
and ‘lose’ as Figure 3. The figure clearly shows
that φ predicts the trend of true results.

Summary and Future Work

As a summary, the overall performance of the
Hidden Markov Process Model in predicting
chess game results is satisfactory. Chess itself is
a rather unpredictable game, especially if two
players are close in rating performance and there
are tons of games where lower rated players
upset higher rated players. Therefore, a success
rate of 55.64% given the three possible game
outcomes is not a bad result.

From Figure 2 we can see that when the
predicted winning probability φ is near the
threshold between a draw and win/lose game, the
prediction result is poor. In future work, a new
model to better predict the game results when
player ratings’ difference is near the threshold
may be possible. In general, it is hard to predict
game results in this edge case but a study of a
large dataset of this particular type of games
may help to establish a new model. Several
factors, including the two players’ historical game
results and trends, game time control, category
of the tournament, chess opening preference and
playing style, may be incorporated to better
evaluate their individual winning probability.

Another further work that can be done is
to compare our system with the prevailing Elo
chess rating system adopted by FIDE. Accurate
comparison needs careful calibration from the
Elo system into our system but from an empirical
points of view, our result should be no worse
than Elo rating system. Much of the appeal of
the Elo system comes from its simplicity and
familiarity, and it was ideally suited to a time
when the computation of ratings was a significant
practical challenge even for an annual list of a
few hundred players. Elo’s formula was derived
theoretically, in an era without large amounts of
historical data or anything approaching today’s
computing power. With the benefit of powerful
computers and large game databases, we are able
to investigate approaches that might do better
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than Elo at predicting chess results. Such an
investigation could have major implications on
the theory and practice of ratings methodology,
both for chess and also for the world beyond
chess.
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